Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20.552
Filtrar
1.
Sci Rep ; 14(1): 8694, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622149

RESUMO

We aimed to investigate the expression and clinic significance of Rac GTPase Activating Protein 1 (RACGAP1) in human lung adenocarcinoma (LUAD). Online database analysis revealed a significant increase in RACGAP1 mRNA expression among 26 types of tumor tissues, including LUAD tissues. Online database and tissue microarray analyses indicated that RACGAP1 expression was significantly upregulated in LUAD tissues. Genetic variation analysis identified four different genetic variations of RACGAPs in LUAD. Moreover, online database analysis showed that RACGAP1 upregulation was correlated with shorter survival in patients with LUAD. After silencing RACGAP1 expression in A549 cells using siRNA and assessing its protein levels via Western blotting, we found that RACGAP1 knockdown inhibited cell growth and induced apoptosis determined using the Cell Counting Kit-8 assay, colony formation assay, and flow cytometry. Mechanistically, western blot analysis indicated that Bax expression increased, whereas Bcl-2 expression decreased. Moreover, RACGAP1 knockdown attenuated PI3K/AKT pathway activation in lung cancer cells. Taken together, our findings showed that RACGAP1 was overexpressed in LUAD tissues and played an important role in lung cancer by increasing cell growth through the PI3K/AKT signaling pathway. This study suggests recommends evaluating RACGAP1 in clinical settings as a novel biomarker and potential therapeutic target for lung cancer.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/patologia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Adenocarcinoma de Pulmão/patologia , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Movimento Celular/genética
2.
Int J Mol Sci ; 25(7)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38612762

RESUMO

Cerebral cavernous malformation (CCM) or familial cavernomatosis is a rare, autosomal dominant, inherited disease characterized by the presence of vascular malformations consisting of blood vessels with an abnormal structure in the form of clusters. Based on the altered gene (CCM1/Krit1, CCM2, CCM3) and its origin (spontaneous or familial), different types of this disease can be found. In this work we have isolated and cultivated primary endothelial cells (ECs) from peripheral blood of a type 1 CCM patient. Differential functional and gene expression profiles of these cells were analyzed and compared to primary ECs from a healthy donor. The mutation of the familial index case consisted of a heterozygous point mutation in the position +1 splicing consensus between exons 15 and 16, causing failure in RNA processing and in the final protein. Furthermore, gene expression analysis by quantitative PCR revealed a decreased expression of genes involved in intercellular junction formation, angiogenesis, and vascular homeostasis. Cell biology analysis showed that CCM1 ECs were impaired in angiogenesis and cell migration. Taken together, the results obtained suggest that the alterations found in CCM1 ECs are already present in the heterozygous condition, suffering from vascular impairment and somewhat predisposed to vascular damage.


Assuntos
Células Endoteliais , Junções Intercelulares , Humanos , Movimento Celular/genética , Éxons , Consenso
3.
Int J Mol Sci ; 25(7)2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38612895

RESUMO

Expression of miR-21 has been found to be altered in almost all types of cancers, and it has been classified as an oncogenic microRNA. In addition, the expression of tumor suppressor gene RECK is associated with miR-21 overexpression in high-grade cervical lesions. In the present study, we analyze the role of miR-21 in RECK gene regulation in cervical cancer cells. To identify the downstream cellular target genes of upstream miR-21, we silenced endogenous miR-21 expression using siRNAs. We analyzed the expression of miR-21 and RECK, as well as functional effects on cell proliferation and migration. We found that in cervical cancer cells, there was an inverse correlation between miR-21 expression and RECK mRNA and protein expression. SiRNAs to miR-21 increased luciferase reporter activity in construct plasmids containing the RECK-3'-UTR microRNA response elements MRE21-1, MRE21-2, and MRE21-3. The role of miR-21 in cell proliferation was also analyzed, and cancer cells transfected with siRNAs exhibited a markedly reduced cell proliferation and migration. Our findings indicate that miR-21 post-transcriptionally down-regulates the expression of RECK to promote cell proliferation and cell migration inhibition in cervical cancer cell survival. Therefore, miR-21 and RECK may be potential therapeutic targets in gene therapy for cervical cancer.


Assuntos
MicroRNAs , Neoplasias do Colo do Útero , Feminino , Humanos , Neoplasias do Colo do Útero/genética , Transdução de Sinais , Proliferação de Células/genética , Movimento Celular/genética , RNA Interferente Pequeno , MicroRNAs/genética , Agitação Psicomotora , RNA de Cadeia Dupla , Proteínas Ligadas por GPI/genética
4.
J Transl Med ; 22(1): 347, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605354

RESUMO

BACKGROUND: THOC7-AS1 and FSTL1 expression are frequently upregulated in cutaneous squamous cell carcinoma (cSCC). However, their molecular biological mechanisms remain elusive and their potential as therapeutic targets needs urgent exploration. METHODS: Human tissue samples were used to evaluate clinical parameters. In vitro and in vivo experiments assessed biological functions. Quantitative PCR, western blot, immunohistochemistry, immunocytochemistry, immunoprecipitation, RNA fluorescence in situ hybridization, RNA pull-down, RNA immunoprecipitation, silver staining, chromatin immunoprecipitation, dual luciferase reporter assays etc. were utilized to explore the molecular biological mechanisms. RESULTS: We found FSTL1 is an oncogene in cSCC, with high expression in tumor tissues and cells. Its elevated expression closely associates with tumor size and local tissue infiltration. In vitro and in vivo, high FSTL1 expression promotes cSCC proliferation, migration and invasion, facilitating malignant behaviors. Mechanistically, FSTL1 interacts with ZEB1 to promote epithelial-to-mesenchymal transition (EMT) in cSCC cells. Exploring upstream regulation, we found THOC7-AS1 can interact with OCT1, which binds the FSTL1 promoter region and promotes FSTL1 expression, facilitating cSCC progression. Finally, treating tumors with THOC7-AS1 antisense oligonucleotides inhibited cSCC proliferative and migratory abilities, delaying tumor progression. CONCLUSIONS: The THOC7-AS1/OCT1/FSTL1 axis regulates EMT and promotes tumor progression in cSCC. This study provides clues and ideas for cSCC targeted therapy.


Assuntos
Carcinoma de Células Escamosas , Proteínas Relacionadas à Folistatina , MicroRNAs , RNA Longo não Codificante , Neoplasias Cutâneas , Humanos , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Proteínas Relacionadas à Folistatina/genética , Proteínas Relacionadas à Folistatina/metabolismo , Hibridização in Situ Fluorescente , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Proliferação de Células/genética , RNA , MicroRNAs/genética , Regulação Neoplásica da Expressão Gênica , RNA Longo não Codificante/genética , Movimento Celular/genética
5.
J Cell Mol Med ; 28(8): e18269, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38568056

RESUMO

Circular RNAs (circRNAs) play an important role in the progression of osteosarcoma. However, the precise function of circPVT1 in osteosarcoma remains elusive. This study aims to explore the molecular mechanism underlying the involvement of circPVT1 in osteosarcoma cells. We quantified circPVT1 expression using qRT-PCR in both control and osteosarcoma cell lines. To investigate the roles of circPVT1, miR-490-5p and HAVCR2 in vitro, we separately conducted overexpression and inhibition experiments for circPVT1, miR-490-5p and HAVCR2 in HOS and U2OS cells. Cell migration was assessed through wound healing and transwell migration assays, and invasion was measured via the Matrigel invasion assay. To elucidate the regulatory mechanism of circPVT1 in osteosarcoma, a comprehensive approach was employed, including fluorescence in situ hybridization, qRT-PCR, Western blot, bioinformatics, dual-luciferase reporter assay and rescue assay. CircPVT1 expression in osteosarcoma cell lines surpassed that in control cells. The depletion of circPVT1 resulted in a notable reduction in the in vitro migration and invasion of osteosarcoma cells. Mechanism experiments revealed that circPVT1 functioned as a miR-490-5p sequester, and directly targeted HAVCR2. Overexpression of miR-490-5p led to a significant attenuation of migration and invasion of osteosarcoma cells, whereas HAVCR2 overexpression had the opposite effect, promoting these abilities. Additionally, circPVT1 upregulated HAVCR2 expression via sequestering miR-490-5p, thereby orchestrating the migration and invasion in osteosarcoma cells. CircPVT1 orchestrates osteosarcoma migration and invasion by regulating the miR-490-5p/HAVCR2 axis, underscoring its potential as a promising therapeutic target for osteosarcoma.


Assuntos
Neoplasias Ósseas , MicroRNAs , Osteossarcoma , Humanos , Hibridização in Situ Fluorescente , Movimento Celular/genética , Osteossarcoma/genética , Neoplasias Ósseas/genética , MicroRNAs/genética , Receptor Celular 2 do Vírus da Hepatite A
6.
Cell Biochem Funct ; 42(3): e4000, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38566395

RESUMO

Tongue squamous cell carcinoma (TSCC) is a prevalent form of oral malignancy, with increasing incidence. Unfortunately, the 5-year survival rate for patients has not exceeded 50%. Studies have shown that sex-determining region Y box 9 (SOX9) correlates with malignancy and tumor stemness in a variety of tumors. To investigate the role of SOX9 in TSCC stemness, we analyzed its influence on various aspects of tumor biology, including cell proliferation, migration, invasion, sphere and clone formation, and drug resistance in TSCC. Our data suggest a close association between SOX9 expression and both the stemness phenotype and drug resistance in TSCC. Immunohistochemical experiments revealed a progressive increase of SOX9 expression in normal oral mucosa, paracancerous tissues, and tongue squamous carcinoma tissues. Furthermore, the expression of SOX9 was closely linked to the TNM stage, but not to lymph node metastasis or tumor diameter. SOX9 is a crucial gene in TSCC responsible for promoting the stemness function of cancer stem cells. Developing drugs that target SOX9 is extremely important in clinical settings.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Bucais , Neoplasias da Língua , Humanos , Carcinoma de Células Escamosas/patologia , Neoplasias da Língua/metabolismo , Linhagem Celular Tumoral , Neoplasias Bucais/genética , Língua/metabolismo , Língua/patologia , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Movimento Celular/genética , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo
7.
Exp Dermatol ; 33(4): e15071, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38566477

RESUMO

Circular RNAs (circRNAs) play important roles in cancer occurrence and progression. To explore and elucidate the clinical significance of specific circular RNA in melanoma and its potential molecular mechanism. CircROR1 expression in melanoma cells and tissues was confirmed by qRT-PCR and ISH. qRT-PCR and Western blotting were performed to measure the levels of CCNE1, KAT2A, MMP9 and TIMP2. MTT, Transwell and wound healing assays were performed to evaluate cell proliferation, invasion and metastasis. A xenograft mouse model was established to further verify the CircROR1/CCNE1 axis in vivo. RNA pull-down and RIP assays were performed to detect the direct interaction KAT2A and CircROR1. A ChIP assay was used to investigate the enrichment of H3K9ac acetylation in the CCNE1 promoter. CircROR1 was significantly upregulated in metastatic melanoma cells and tissues, promoting proliferation, invasion and metastasis in vitro and tumour growth in vivo. CircROR1 overexpression increased CCNE1 and MMP9 protein expression and decreased TIMP2 protein expression. Functional rescue assays demonstrated that CircROR1 played a role in promoting malignant progression through CCNE1. CircROR1 specifically bound to the KAT2A protein without affecting its expression. CircROR1 overexpression increased the level of H3K9ac modification in the CCNE1 promoter region by recruiting KAT2A, thus upregulating CCNE1 expression. CircROR1 upregulates CCNE1 expression through KAT2A-mediated histone acetylation. Our research confirms the critical role of CircROR1 in melanoma invasion and metastasis, and CircROR1 could serve as a potential therapeutic target for melanoma treatment.


Assuntos
Melanoma , MicroRNAs , Humanos , Animais , Camundongos , MicroRNAs/metabolismo , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Melanoma/metabolismo , Linhagem Celular Tumoral , RNA Circular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Movimento Celular/genética , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo , Ciclina E/metabolismo , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo
8.
Oncol Res ; 32(4): 625-641, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38560562

RESUMO

The cancer cell metastasis is a major death reason for patients with non-small cell lung cancer (NSCLC). Although researchers have disclosed that interleukin 17 (IL-17) can increase matrix metalloproteinases (MMPs) induction causing NSCLC cell metastasis, the underlying mechanism remains unclear. In the study, we found that IL-17 receptor A (IL-17RA), p300, p-STAT3, Ack-STAT3, and MMP19 were up-regulated both in NSCLC tissues and NSCLC cells stimulated with IL-17. p300, STAT3 and MMP19 overexpression or knockdown could raise or reduce IL-17-induced p-STAT3, Ack-STAT3 and MMP19 level as well as the cell migration and invasion. Mechanism investigation revealed that STAT3 and p300 bound to the same region (-544 to -389 nt) of MMP19 promoter, and p300 could acetylate STAT3-K631 elevating STAT3 transcriptional activity, p-STAT3 or MMP19 expression and the cell mobility exposed to IL-17. Meanwhile, p300-mediated STAT3-K631 acetylation and its Y705-phosphorylation could interact, synergistically facilitating MMP19 gene transcription and enhancing cell migration and invasion. Besides, the animal experiments exhibited that the nude mice inoculated with NSCLC cells by silencing p300, STAT3 or MMP19 gene plus IL-17 treatment, the nodule number, and MMP19, Ack-STAT3, or p-STAT3 production in the lung metastatic nodules were all alleviated. Collectively, these outcomes uncover that IL-17-triggered NSCLC metastasis involves up-regulating MMP19 expression via the interaction of STAT3-K631 acetylation by p300 and its Y705-phosphorylation, which provides a new mechanistic insight and potential strategy for NSCLC metastasis and therapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Camundongos , Animais , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Interleucina-17/genética , Interleucina-17/metabolismo , Fosforilação , Neoplasias Pulmonares/patologia , Acetilação , Camundongos Nus , Transcrição Gênica , Movimento Celular/genética , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica
9.
Oncol Res ; 32(4): 615-624, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38560567

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive solid malignancies. A specific mechanism of its metastasis has not been established. In this study, we investigated whether Neural Wiskott-Aldrich syndrome protein (N-WASP) plays a role in distant metastasis of PDAC. We found that N-WASP is markedly expressed in clinical patients with PDAC. Clinical analysis showed a notably more distant metastatic pattern in the N-WASP-high group compared to the N-WASP-low group. N-WASP was noted to be a novel mediator of epithelial-mesenchymal transition (EMT) via gene expression profile studies. Knockdown of N-WASP in pancreatic cancer cells significantly inhibited cell invasion, migration, and EMT. We also observed positive association of lysyl oxidase-like 2 (LOXL2) and focal adhesion kinase (FAK) with the N-WASP-mediated response, wherein EMT and invadopodia function were modulated. Both N-WASP and LOXL2 depletion significantly reduced the incidence of liver and lung metastatic lesions in orthotopic mouse models of pancreatic cancer. These results elucidate a novel role for N-WASP signaling associated with LOXL2 in EMT and invadopodia function, with respect to regulation of intercellular communication in tumor cells for promoting pancreatic cancer metastasis. These findings may aid in the development of therapeutic strategies against pancreatic cancer.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Humanos , Camundongos , Aminoácido Oxirredutases/genética , Aminoácido Oxirredutases/metabolismo , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Transição Epitelial-Mesenquimal/genética , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Neoplasias Pancreáticas/patologia , Transdução de Sinais , Proteína da Síndrome de Wiskott-Aldrich/metabolismo
10.
Sci Rep ; 14(1): 7632, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561366

RESUMO

CircRNAs are a class of highly stable noncoding RNAs that play an important role in the progression of many diseases, especially cancer. In this study, high-throughput sequencing was used to screen for abnormally expressed circRNAs, and we found that circGPC3 was overexpressed in HCC tissues. However, the underlying mechanism of circGPC3 in the development and metastasis of hepatocellular carcinoma (HCC) remains unknown. In our study, we found that circGPC3 was significantly upregulated in HCC tissues and cells and that its overexpression was positively correlated with overall survival, TNM stage and lymph node metastasis. In vivo and in vitro experiments showed that circGPC3 knockdown repressed HCC cell migration, invasion and proliferation and promoted apoptosis. Mechanistically, circGPC3 promoted HCC proliferation and metastasis through the miR-578/RAB7A/PSME3 axis. Our results demonstrate that circGPC3 contributes to the progression of HCC and provides an intervention target for HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , RNA Longo não Codificante , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Circular/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Movimento Celular/genética , RNA Longo não Codificante/metabolismo
11.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(3): 578-584, 2024 Mar 20.
Artigo em Chinês | MEDLINE | ID: mdl-38597450

RESUMO

OBJECTIVE: To investigate the regulatory role of miR-26b-3p in proliferation, migration and invasion of glioma. METHODS: The expressions of miR-26b-3p and cAMP-responsive element binding protein 1 (CREB1) in gliomas of different pathological grades were detected with RT-qPCR and Western blotting. Bioinformatic methods were used to analyze the target sequence of miRNA-26b-3p binding to CREB1, and dual luciferase gene reporter experiment was performed to explore the mechanism for targeted regulation of CREB1 by miR-26b-3p. Glioma U251 cells were treated with miR-26b-3p mimic or inhibitor, and the changes in CREB1 expression and cell proliferation, migration, invasion and apoptosis were determined with Western blotting, CCK-8 assay, wound healing assay, Transwell assay, and flow cytometry. RESULTS: The expression of miR-26b-3p decreased while CREB1 expression increased significantly as the pathological grade of gliomas increased (P < 0.05). Dual luciferase gene reporter experiment confirmed that CREB1 was a downstream target of miR-26b-3p. Inhibition of miR-26b-3p significantly upregulated the expression of CERB1, suppressed apoptosis and promoted proliferation and invasion of glioma cells, and overexpression of miR-26b-3p produced the opposite effects (P < 0.05). CONCLUSION: MiR-26b-3p regulates CREB1 expression to modulate apoptosis, proliferation, migration and invasion of glioma cells, thereby participating in tumorigenesis and progression of glioma.


Assuntos
Glioma , MicroRNAs , Humanos , MicroRNAs/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Glioma/genética , Glioma/patologia , Apoptose/genética , Proliferação de Células/genética , Luciferases/genética , Regulação Neoplásica da Expressão Gênica , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo
12.
Sci Rep ; 14(1): 8243, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589413

RESUMO

The role of circular RNA (circRNAs) in hepatocellular carcinoma (HCC) has been extensively studied. Previous research has highlighted the regulatory role of circSNX6 in HCC cells and tissues. However, the precise mechanism underlying HCC progression still requires comprehensive investigation. The study initially utilized quantitative reverse transcription-polymerase chain reaction (qRT-PCR) to assess circSNX6 expression levels in HCC cell lines and tissues. Subsequently, the stability of circRNA was evaluated through Ribonuclease R and actinomycin D treatment assays. The impact of circSNX6 knockdown on proliferation, migration, invasion, and angiogenesis abilities was determined using various assays including colony formation, Transwell culture system, tube formation assay, and cell counting kit (CCK)-8 assays. Additionally, RNA immunoprecipitation chip and dual-luciferase reporter assays were employed to investigate the interactions between circSNX6 and miR-383-5p. Finally, an HCC xenograft tumor model in mice was established to assess the in vivo expression of circSNX6 and its functional role in HCC. Our findings revealed an elevated circSNX6 expression in HCC tissues, which was correlated with poor patient prognosis. Knockdown of circSNX6 suppressed HCC cell growth, invasion, metastasis, and angiogenesis. The downregulation of miR-383-5p, a target of circSNX6, significantly attenuated the tumor-suppressive effects induced by circSNX6 knockdown. Moreover, circSNX6 was found to modulate VEGFA expression by targeting miR-383-5p. The inhibition of HCC cell proliferation by miR-383-5p could be partially reversed by overexpressing VEGFA. Silencing circSNX6 also suppressed tumor formation and the metastasis of HCC cells in a mouse model. In summary, our findings suggest that circSNX6 promotes cell proliferation, metastasis, and angiogenesis in HCC by regulating the miR-383-5p/VEGFA pathway.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Humanos , Animais , Camundongos , Carcinoma Hepatocelular/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Hepáticas/patologia , 60489 , Linhagem Celular Tumoral , Transdução de Sinais , RNA Circular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Movimento Celular/genética , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
13.
Cell Mol Biol Lett ; 29(1): 47, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589823

RESUMO

BACKGROUND: Glucose-6-phosphate dehydrogenase (G6PD) plays an important role in vascular smooth muscle cell (VSMC) phenotypic switching, which is an early pathogenic event in various vascular remodeling diseases (VRDs). However, the underlying mechanism is not fully understood. METHODS: An IP‒LC‒MS/MS assay was conducted to identify new binding partners of G6PD involved in the regulation of VSMC phenotypic switching under platelet-derived growth factor-BB (PDGF-BB) stimulation. Co-IP, GST pull-down, and immunofluorescence colocalization were employed to clarify the interaction between G6PD and voltage-dependent anion-selective channel protein 1 (VDAC1). The molecular mechanisms involved were elucidated by examining the interaction between VDAC1 and apoptosis-related biomarkers, as well as the oligomerization state of VDAC1. RESULTS: The G6PD level was significantly elevated and positively correlated with the synthetic characteristics of VSMCs induced by PDGF-BB. We identified VDAC1 as a novel G6PD-interacting molecule essential for apoptosis. Specifically, the G6PD-NTD region was found to predominantly contribute to this interaction. G6PD promotes VSMC survival and accelerates vascular neointimal hyperplasia by inhibiting VSMC apoptosis. Mechanistically, G6PD interacts with VDAC1 upon stimulation with PDGF-BB. By competing with Bax for VDAC1 binding, G6PD reduces VDAC1 oligomerization and counteracts VDAC1-Bax-mediated apoptosis, thereby accelerating neointimal hyperplasia. CONCLUSION: Our study showed that the G6PD-VDAC1-Bax axis is a vital switch in VSMC apoptosis and is essential for VSMC phenotypic switching and neointimal hyperplasia, providing mechanistic insight into early VRDs.


Assuntos
Glucosefosfato Desidrogenase , Músculo Liso Vascular , Canal de Ânion 1 Dependente de Voltagem , Humanos , Hiperplasia/metabolismo , Hiperplasia/patologia , Becaplermina/genética , Becaplermina/metabolismo , Proliferação de Células , Proteína X Associada a bcl-2/metabolismo , Glucosefosfato Desidrogenase/metabolismo , Músculo Liso Vascular/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem , Neointima/genética , Neointima/metabolismo , Neointima/patologia , Apoptose , Miócitos de Músculo Liso/metabolismo , Movimento Celular/genética , Células Cultivadas , Fenótipo
14.
J Transl Med ; 22(1): 335, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589907

RESUMO

OBJECTIVE: This study aimed to assess the functions of cell division cycle protein 45 (CDC45) in Non-small cell lung cancer (NSCLC) cancer and its effects on stemness and metastasis. METHODS: Firstly, differentially expressed genes related to lung cancer metastasis and stemness were screened by differential analysis and lasso regression. Then, in vitro, experiments such as colony formation assay, scratch assay, and transwell assay were conducted to evaluate the impact of CDC45 knockdown on the proliferation and migration abilities of lung cancer cells. Western blotting was used to measure the expression levels of related proteins and investigate the regulation of CDC45 on the cell cycle. Finally, in vivo model with subcutaneous injection of lung cancer cells was performed to verify the effect of CDC45 on tumor growth. RESULTS: This study identified CDC45 as a key gene potentially influencing tumor stemness and lymph node metastasis. Knockdown of CDC45 not only suppressed the proliferation and migration abilities of lung cancer cells but also caused cell cycle arrest at the G2/M phase. Further analysis revealed a negative correlation between CDC45 and cell cycle-related proteins, stemness-related markers, and tumor mutations. Mouse experiments confirmed that CDC45 knockdown inhibited tumor growth. CONCLUSION: As a novel regulator of stemness, CDC45 plays a role in regulating lung cancer cell proliferation, migration, and cell cycle. Therefore, CDC45 may serve as a potential target for lung cancer treatment and provide a reference for further mechanistic research and therapeutic development.


Assuntos
Adenocarcinoma de Pulmão , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Camundongos , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , Linhagem Celular Tumoral , Adenocarcinoma de Pulmão/genética , Proliferação de Células/genética , Pontos de Checagem do Ciclo Celular/genética , Divisão Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica
15.
Zhongguo Fei Ai Za Zhi ; 27(3): 161-169, 2024 Mar 20.
Artigo em Chinês | MEDLINE | ID: mdl-38590190

RESUMO

BACKGROUND: Lung cancer is a common malignant tumor of the lung. To explore the molecular mechanism of the occurrence and development of lung cancer is a hot topic in current research. Cyclic RNA D1 (CircCCND1) is highly expressed in lung cancer and may be a potential target for the treatment of lung cancer. The aim of this study was to investigate the effect of CircCCND1 on the malignant biological behaviors of lung cancer cells by regulating the miR-340-5p/transforming growth factor ß-induced factor homeobox 1 (TGIF1) axis. METHODS: The expression of CircCCND1, miR-340-5p, and TGIF1 mRNA in human normal lung epithelial cells BEAS-2B and human lung cancer H446 cells were detected. H446 cells cultured in vitro were randomly divided into control group, CircCCND1 siRNA group, miR-340-5p mimics group, negative control group, and CircCCND1 siRNA+miR-340-5p inhibitor group. Cell proliferation, mitochondrial membrane potential, apoptosis, migration, and invasion were detected, and the expressions of CircCCND1, miR-340-5p, TGIF1 mRNA, BCL2-associated X protein (Bax), cleaved Caspase-3, N-cadherin, E-cadherin, and TGIF1 proteins in each group were detected. The targeting relationship of miR-340-5p with CircCCND1 and TGIF1 was verified. RESULTS: Compared with BEAS-2B cells, CircCCND1 and TGIF1 mRNA were increased in H446 cells, and miR-340-5p expression was decreased (P<0.05). Knocking down CircCCND1 or up-regulating the expression of miR-340-5p inhibited the proliferation, migration and invasion of H446 cells, decreased the expression of TGIF1 mRNA and TGIF1 protein, and promoted cell apoptosis. Down-regulation of miR-340-5p could antagonize the inhibitory effect of CircCCND1 knockdown on the malignant biological behavior of H446 lung cancer cells. CircCCND1 may target the down-regulation of miR-340-5p, and miR-340-5p may target the down-regulation of TGIF1. CONCLUSIONS: Knocking down CircCCND1 can inhibit the malignant behaviors of lung cancer H446 cells, which may be achieved through the regulation of miR-340-5p/TGIF1 axis.


Assuntos
Neoplasias Pulmonares , MicroRNAs , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Pulmão/patologia , RNA Mensageiro , RNA Interferente Pequeno , Proliferação de Células/genética , Movimento Celular/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Proteínas Repressoras/genética , Proteínas de Homeodomínio/genética
16.
BMC Med Genomics ; 17(1): 83, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594690

RESUMO

BACKGROUND: Glioblastoma multiforme (GBM) is the most common primary CNS tumor, characterized by high mortality and heterogeneity. However, the related lncRNA signatures and their target microRNA (miRNA) for GBM are still mostly unknown. Therefore, it is critical that we discover lncRNA markers in GBM and their biological activities. MATERIALS AND METHODS: GBM-related RNA-seq data were obtained from the Cancer Genome Atlas (TCGA) database. The "edger" R package was used for differently expressed lncRNAs (DELs) identification. Then, we forecasted prospective miRNAs that might bind to lncRNAs by Cytoscape software. Survival analysis of those miRNAs was examined by the starBase database, and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of the miRNAs' target genes was conducted by the Gene Set Enrichment Analysis (GSEA) database and R software. Moreover, the proliferative ability of unc-5 netrin receptor B antisense RNA 1 (UNC5B-AS1) cells was evaluated by Cell Counting Kit-8 (CCK-8) analysis. Mechanistically, the regulatory interaction between UNC5B-AS1 and miRNA in GBM biological processes was studied using CCK-8 analysis. RESULTS: Our results indicated that overexpression of UNC5B-AS1 has been shown to suppress GBM cell growth. Mechanistically, miR-24-3p in GBM was able to alleviate the anti-oncogenic effects of UNC5B-AS1 on cell proliferation. CONCLUSION: The discovery of the novel UNC5B-AS1-miR-24-3p network suggests possible lncRNA and miRNA roles in the development of GBM, which may have significant ramifications for the analysis of clinical prognosis and the development of GBM medications.


Assuntos
Glioblastoma , MicroRNAs , RNA Longo não Codificante , Humanos , Glioblastoma/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Estudos Prospectivos , Linhagem Celular Tumoral , MicroRNAs/genética , MicroRNAs/metabolismo , Proliferação de Células/genética , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica , Receptores de Netrina/genética , Receptores de Netrina/metabolismo
17.
BMC Cancer ; 24(1): 408, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566039

RESUMO

BACKGROUND: Accumulating evidence indicates that aberrant non-SMC condensin II complex subunit D3 (NCAPD3) is associated with carcinogenesis of various cancers. Nevertheless, the biological role of NCAPD3 in the pathogenesis of non-small cell lung cancer (NSCLC) remains unclear. METHODS: Immunohistochemistry and Western blot were performed to assess NCAPD3 expression in NSCLC tissues and cell lines. The ability of cell proliferation, invasion, and migration was evaluated by CCK-8 assays, EdU assays, Transwell assays, and scratch wound healing assays. Flow cytometry was performed to verify the cell cycle and apoptosis. RNA-sequence and rescue experiment were performed to reveal the underlying mechanisms. RESULTS: The results showed that the expression of NCAPD3 was significantly elevated in NSCLC tissues. High NCAPD3 expression in NSCLC patients was substantially associated with a worse prognosis. Functionally, knockdown of NCAPD3 resulted in cell apoptosis and cell cycle arrest in NSCLC cells as well as a significant inhibition of proliferation, invasion, and migration. Furthermore, RNA-sequencing analysis suggested that NCAPD3 contributes to NSCLC carcinogenesis by regulating PI3K/Akt/FOXO4 pathway. Insulin-like growth factors-1 (IGF-1), an activator of PI3K/Akt signaling pathway, could reverse NCAPD3 silence-mediated proliferation inhibition and apoptosis in NSCLC cells. CONCLUSION: NCAPD3 suppresses apoptosis and promotes cell proliferation via the PI3K/Akt/FOXO4 signaling pathway, suggesting a potential use for NCAPD3 inhibitors as NSCLC therapeutics.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinogênese/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Transformação Celular Neoplásica , Neoplasias Pulmonares/patologia , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA
18.
Cell Commun Signal ; 22(1): 206, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566133

RESUMO

BACKGROUND: The protein annexin A6 (AnxA6) is involved in numerous membrane-related biological processes including cell migration and invasion by interacting with other proteins. The dysfunction of AnxA6, including protein expression abundance change and imbalance of post-translational modification, is tightly related to multiple cancers. Herein we focus on the biological function of AnxA6 SUMOylation in hepatocellular carcinoma (HCC) progression. METHODS: The modification sites of AnxA6 SUMOylation were identified by LC-MS/MS and amino acid site mutation. AnxA6 expression was assessed by immunohistochemistry and immunofluorescence. HCC cells were induced into the epithelial-mesenchymal transition (EMT)-featured cells by 100 ng/mL 12-O-tetradecanoylphorbol-13-acetate exposure. The ability of cell migration was evaluated under AnxA6 overexpression by transwell assay. The SUMO1 modified AnxA6 proteins were enriched from total cellular proteins by immunoprecipitation with anti-SUMO1 antibody, then the SUMOylated AnxA6 was detected by Western blot using anti-AnxA6 antibody. The nude mouse xenograft and orthotopic hepatoma models were established to determine HCC growth and tumorigenicity in vivo. The HCC patient's overall survival versus AnxA6 expression level was evaluated by the Kaplan-Meier method. RESULTS: Lys579 is a major SUMO1 modification site of AnxA6 in HCC cells, and SUMOylation protects AnxA6 from degradation via the ubiquitin-proteasome pathway. Compared to the wild-type AnxA6, its SUMO site mutant AnxA6K579R leads to disassociation of the binding of AnxA6 with RHOU, subsequently RHOU-mediated p-AKT1ser473 is upregulated to facilitate cell migration and EMT progression in HCC. Moreover, the SENP1 deSUMOylates AnxA6, and AnxA6 expression is negatively correlated with SENP1 protein expression level in HCC tissues, and a high gene expression ratio of ANXA6/SENP1 indicates a poor overall survival of patients. CONCLUSIONS: AnxA6 deSUMOylation contributes to HCC progression and EMT phenotype, and the combination of AnxA6 and SENP1 is a better tumor biomarker for diagnosis of HCC grade malignancy and prognosis.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Humanos , Camundongos , Anexina A6/genética , Anexina A6/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Cromatografia Líquida , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Sumoilação , Espectrometria de Massas em Tandem
19.
PLoS One ; 19(4): e0297695, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38568917

RESUMO

BACKGROUND: This study aims to study the possible action mechanism of T-cell immunoglobulin and mucin domain 3 (TIM3) on the migratory and invasive abilities of thyroid carcinoma (TC) cells. METHODS: GSE104005 and GSE138198 datasets were downloaded from the GEO database for identifying differentially expressed genes (DEGs). Functional enrichment analysis and protein-protein interaction (PPI) analysis were performed on the common DEGs in GSE104005 and GSE138198 datasets. Subsequently, in order to understand the effect of a common DEG (TIM3) on TC cells, we performed in vitro experiments using FRO cells. The migratory and invasive abilities of FRO cells were detected by wound scratch assay and Transwell assay. Proteins expression levels of the phosphorylated (p)-extracellular signal-regulated kinase (ERK)1/2, matrix metalloproteinase-2 (MMP-2) and MMP-9 were determined via Western blotting after ERK1/2 inhibition in TIM3-NC group and TIM3-mimic group. RESULTS: 316 common DEGs were identified in GSE104005 and GSE138198 datasets. These DEGs were involved in the biological process of ERK1 and ERK2 cascade. TIM3 was significantly up-regulated in TC. In vitro cell experiments showed that TIM3 could promote migration and invasion of TC cells. Moreover, TIM3 may affect the migration, invasive abilities of TC cells by activating the ERK1/2 pathway. CONCLUSION: The above results indicate that TIM3 may affect the migratory and invasive of TC cells by activating the ERK1/2 pathway.


Assuntos
Sistema de Sinalização das MAP Quinases , Neoplasias da Glândula Tireoide , Humanos , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Receptor Celular 2 do Vírus da Hepatite A/metabolismo , Linhagem Celular Tumoral , Processos Neoplásicos , Neoplasias da Glândula Tireoide/genética , Movimento Celular/genética
20.
J Cancer Res Clin Oncol ; 150(4): 179, 2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38584230

RESUMO

PURPOSE: The present study aims to determine the molecular mechanism mediated by RAD51 antisense RNA 1 (RAD51-AS1) in ovarian cancer (OvCA). METHODS: The data associated with RAD51-AS1 in OvCA were obtained from the Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) database. Relative expression of RAD51-AS1 was detected. Determination of cell proliferation, metastasis, and invasion was performed by cell counting, colony formation, would-healing, and transwell invasion assays. Protein levels were detected by western blotting. The molecular mechanism mediated by RAD51-AS1 was predicted by bioinformatics analysis and verified by dual-luciferase reporter assays. Subcutaneous tumorigenesis models were used to confirm the function of RAD51-AS1 in vivo. RESULTS: Data from TCGA and GEO showed that RAD51-AS1 was associated with poor prognosis in OvCA patients and DNA repair, cell cycle, focal adhesion, and apoptosis in SKOV3.ip cells. High levels of RAD51-AS1 were detected in OvCA cells. Overexpressing RAD51-AS1 enhanced the proliferative, invading, and migratory capabilities of OvCA cells in vitro while silencing RAD51-AS1 exhibited the opposite effects. Mechanically, RAD51-AS1 elevated eukaryotic initiation factor 5A2 (EIF5A2) expression as a sponge for microRNA (miR)-140-3p. Finally, the role of RAD51-AS1 was verified by subcutaneous tumorigenesis models. CONCLUSION: RAD51-AS1 promoted OvCA progression by the regulation of the miR-140-3p/EIF5A2 axis, which illustrated the potential therapeutic target for OvCA.


Assuntos
MicroRNAs , Neoplasias Ovarianas , RNA Longo não Codificante , Feminino , Humanos , Carcinogênese/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Transformação Celular Neoplásica/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Ovarianas/genética , Rad51 Recombinase/genética , RNA Longo não Codificante/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...